We support medical doctors
such that they can
optimally care about their patients!
Eye Tracking Based Navigation
for Proton Beam Therapy
PhD Thesis Defense
Presented by Stephan Wyder
Faculty representative: |
Prof. Dr. Philippe C. Cattin |
Co-referee: |
Prof. Dr. Raphael Sznitman |
External expert: |
Prof. Dr. med. Francis Munier |
Men, 2013, Switzerland
Women, 2013, Switzerland
- Precise radiation dose delivery ✓
- Iterative tumor alignment with X-rays ❗
- Manual gazing control ❗
Is it possible to accurately localize and align the eye in a different way?
Model configuration 1:
- single camera
- single light source
$\Rightarrow$ Enables to localize eye center $\mathbf{c}$
Model configuration 2:
- multiple cameras
- multiple light sources
$\Rightarrow$ Better accuracy and robustness
- Data from construction plan
- Field of view optimization
- Eye tracker pose estimation
- Eye parameter estimation
All vectors in $\mathbb{R}_3$
Input data:
-
$
\definecolor{mygreen}{RGB}{123,171,5}
\color{mygreen}\text{from system calibration}
$
-
$
\definecolor{myblue}{RGB}{16,127,199}
\color{myblue}\text{from feature detection}
$
Output data:
-
$
\definecolor{myyellow}{RGB}{254,184,84}
\color{myyellow}\text{eye location}
$
Further:
- Geometrical axis
- Visual axis / point of gaze
$$
\definecolor{myblue}{RGB}{16,127,199}
\definecolor{mygreen}{RGB}{123,171,5}
\definecolor{myyellow}{RGB}{254,184,84}
\underbrace{({\color{mygreen}\textbf{l}_i} - {\color{mygreen}\textbf{o}_j}) \times ({\color{myblue}\textbf{u}_{ij}} - {\color{mygreen}\textbf{o}_j})}_{w_{ij}} \bullet ({\color{myyellow}\textbf{c}} - {\color{mygreen}\textbf{o}_j}) = 0\\
$$
$$
\definecolor{myblue}{RGB}{16,127,199}
\definecolor{mygreen}{RGB}{123,171,5}
\definecolor{myyellow}{RGB}{254,184,84}
w_{ij} \bullet {\color{myyellow}\textbf{c}} - w_{ij} \bullet {\color{mygreen}\textbf{o}_j} = 0\\
w_{ij}^T \cdot {\color{myyellow}\textbf{c}} = w_{ij} \bullet {\color{mygreen}\textbf{o}_j}\\
\underbrace{
\left[
\begin{array}{c}
{[({\color{mygreen}\mathbf{l}_{A1}}-{\color{mygreen}\mathbf{o}_A}) \times ({\color{myblue}\mathbf{u}_{A4}}-{\color{mygreen}\mathbf{o}_A})]}^{T}\\
{[({\color{mygreen}\mathbf{l}_{A1}}-{\color{mygreen}\mathbf{o}_B}) \times ({\color{myblue}\mathbf{u}_{B4}}-{\color{mygreen}\mathbf{o}_B})]}^{T}\\
\vdots \\
{[({\color{mygreen}\mathbf{l}_{B2}}-{\color{mygreen}\mathbf{o}_A}) \times ({\color{myblue}\mathbf{u}_{A1}}-{\color{mygreen}\mathbf{o}_A})]}^{T}\\
{[({\color{mygreen}\mathbf{l}_{B2}}-{\color{mygreen}\mathbf{o}_B}) \times ({\color{myblue}\mathbf{u}_{B2}}-{\color{mygreen}\mathbf{o}_B})]}^{T}\\
\end{array}
\right]
}_{\text{M}_2}
\cdot \, {\color{myyellow}\textbf{c}} =
\underbrace{
\left[
\begin{array}{c}
({\color{mygreen}\mathbf{l}_{A1}}-{\color{mygreen}\mathbf{o}_A}) \times ({\color{myblue}\mathbf{u}_{A4}}-{\color{mygreen}\mathbf{o}_A}) \bullet {\color{mygreen}\mathbf{o_A}}\\
({\color{mygreen}\mathbf{l}_{A1}}-{\color{mygreen}\mathbf{o}_B}) \times ({\color{myblue}\mathbf{u}_{B4}}-{\color{mygreen}\mathbf{o}_B}) \bullet {\color{mygreen}\mathbf{o_B}}\\
\vdots \\
({\color{mygreen}\mathbf{l}_{B2}}-{\color{mygreen}\mathbf{o}_A}) \times ({\color{myblue}\mathbf{u}_{A1}}-{\color{mygreen}\mathbf{o}_A}) \bullet {\color{mygreen}\mathbf{o_A}}\\
({\color{mygreen}\mathbf{l}_{B2}}-{\color{mygreen}\mathbf{o}_B}) \times ({\color{myblue}\mathbf{u}_{B2}}-{\color{mygreen}\mathbf{o}_B}) \bullet {\color{mygreen}\mathbf{o_B}}\\
\end{array}
\right]
}_{\mathbf{h}}\\
\mathbf{M}_2 \cdot {\color{myyellow}\mathbf{c}} = \mathbf{h}\\
{\color{myyellow}\mathbf{c}} = (\mathbf{M}^\text{T}_2 \mathbf{M}_2)^{-1} \cdot \mathbf{M}^\text{T}_2 \mathbf{h}
$$
Classical evaluation with volunteers.
Point of gaze accuracy: $0.96^{\circ}$
Novel evaluation with an eye phantom.
Eye center accuracy (20 pos.): $0.68$mm
Is it possible to accurately localize and align the eye in a different way?
Yes, it's possible!
Eye localization system:
- ✓ Integrated eye tracking system
- ✓ Validated system accuracy
- ⇒ Improving feature detection
- ⇒ Finding the optimal field of view
Improved navigation:
- ✓ Eye localization system, UniBasel
- ✓ Patient specific eye model, UniBern
- ⇒ Combination of both models, PSI
- ⇒ Clinical evaluation, PSI
Project partners:
Paul Scherrer Institute:
$\Rightarrow$ A. Lomax, J. Hrbacek, F. Hennings
University of Bern (Ophthalmic Technology Laboratory):
$\Rightarrow$ R. Sznitman, J. Kowal, S. de Zanet, C. Ciller, S. Apostolopoulos
Project support:
University of Basel (CIAN):
$\Rightarrow$ P. Cattin, S. Pezold
University of Basel (BMC):
$\Rightarrow$ B. Müller, G. Schulz
University Hospital Basel (Radiological Physics Group):
$\Rightarrow$ O. Bieri, F. Santini
AOT AG:
$\Rightarrow$ W. Deibel, A. Schneider
Project funding:
Swiss National Science Foundation
We support medical doctors
such that they can
optimally care about their patients!